Multiscale Simulation of Indentation, Retraction and Fracture Processes of Nanocontact

نویسندگان

  • Jifa Mei
  • Junwan Li
  • Yushan Ni
  • Huatao Wang
چکیده

The process of nanocontact including indentation and retraction between a large Ni tip and a Cu substrate is investigated using quasicontinuum (QC) method. The multiscale model reveals that significant plastic deformation occurs during the process of nanocontact between Ni tip and Cu substrate. Plastic deformation is observed in an area as large as 20 nm wide and 10 nm thick beneath Ni tip during the indentation and retraction. Also, plastic deformation at a deep position in the Cu substrate does not disappear after the neck failure. The analysis of generalized planar fault energy curve shows that there is a strong tendency for deformation twinning in Cu substrate. However, deformation twinning will be retarded during indentation due to the high stress intensity caused by stepped surface of Ni tip. The abrupt drop of load curve during tip retraction is attributed to the two different fracture mechanisms. One is atomic rearrangement near the interface of Ni tip and Cu substrate at the initial stage of neck fracture, the other is shear behavior of adjacent {111} planes at the necking point. A comparison of the critical load and critical contact radius for neck fracture is also made between theoretical values and our numerical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis

Nano/micro-manufacturing under wet condition is an important consideration for various tool-based processes such as indentation, scratching, and machining. The existence of liquids adds complexity to the system, changes the tool/work interfacial condition, and affects material behaviors. For indentation, it may also affect material property measurements. However, little effort has been made to ...

متن کامل

An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the u...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Experimental and Finite Element Simulation of Nano-indentation on Metal Matrix Composites: Hardness Prediction

The scientific importance of nanocomposites are being increased due to their improvedproperties. This paper is divided into two parts. First, Al-Al2O3 nanocomposite wasproduced by using ball milling technique followed by cold compaction and sintering.Microstructure and morphology studies were done through SEM, TEM, and EDX anal-ysis on the produced powder. The mechanical properties of the produ...

متن کامل

Numerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading

The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010